Arbeitspapier

Forecasting realized volatility in turbulent times using temporal fusion transformers

This paper analyzes the performance of temporal fusion transformers in forecasting realized volatilities of stocks listed in the S&P 500 in volatile periods by comparing the predictions with those of state-of-the-art machine learning methods as well as GARCH models. The models are trained on weekly and monthly data based on three different feature sets using varying training approaches including pooling methods. I find that temporal fusion transformers show very good results in predicting financial volatility and outperform long short-term memory networks and random forests when using pooling methods. The use of sectoral pooling substantially improves the predictive performance of all machine learning approaches used. The results are robust to different ways of training the models.

Sprache
Englisch

Erschienen in
Series: FAU Discussion Papers in Economics ; No. 03/2023

Klassifikation
Wirtschaft
Neural Networks and Related Topics
Forecasting Models; Simulation Methods
Financial Econometrics
Financial Markets and the Macroeconomy
Thema
Realized volatility
temporal fusion transformer
long short-term memory network
random forest

Ereignis
Geistige Schöpfung
(wer)
Frank, Johannes
Ereignis
Veröffentlichung
(wer)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics
(wo)
Nürnberg
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Frank, Johannes
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics

Entstanden

  • 2023

Ähnliche Objekte (12)