Arbeitspapier
Weighted power mean copulas: Theory and application
It is well known that the arithmetic mean of two possibly different copulas forms a copula, again. More general, we focus on the weighted power mean (WPM) of two arbitrary copulas which is not necessary a copula again, as different counterexamples reveal. However, various conditions regarding the mean function and the underlying copula are given which guarantee that a proper copula (so-called WPM copula) results. In this case, we also derive dependence properties of WPM copulas and give some brief application to financial return series.
- Language
-
Englisch
- Bibliographic citation
-
Series: IWQW Discussion Papers ; No. 01/2011
- Classification
-
Wirtschaft
- Subject
-
Copulas
generalized power mean
max id
left tail decreasing
tail dependence
- Event
-
Geistige Schöpfung
- (who)
-
Klein, Ingo
Fischer, Matthias J.
Pleier, Thomas
- Event
-
Veröffentlichung
- (who)
-
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
- (where)
-
Nürnberg
- (when)
-
2011
- Handle
- Last update
-
2025-03-10T11:44:10+0100
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Klein, Ingo
- Fischer, Matthias J.
- Pleier, Thomas
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
Time of origin
- 2011