Arbeitspapier

Weighted power mean copulas: Theory and application

It is well known that the arithmetic mean of two possibly different copulas forms a copula, again. More general, we focus on the weighted power mean (WPM) of two arbitrary copulas which is not necessary a copula again, as different counterexamples reveal. However, various conditions regarding the mean function and the underlying copula are given which guarantee that a proper copula (so-called WPM copula) results. In this case, we also derive dependence properties of WPM copulas and give some brief application to financial return series.

Language
Englisch

Bibliographic citation
Series: IWQW Discussion Papers ; No. 01/2011

Classification
Wirtschaft
Subject
Copulas
generalized power mean
max id
left tail decreasing
tail dependence

Event
Geistige Schöpfung
(who)
Klein, Ingo
Fischer, Matthias J.
Pleier, Thomas
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
(where)
Nürnberg
(when)
2011

Handle
Last update
2025-03-10T11:44:10+0100

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Klein, Ingo
  • Fischer, Matthias J.
  • Pleier, Thomas
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)

Time of origin

  • 2011

Other Objects (12)