Arbeitspapier
Nowcasting in a pandemic using non-parametric mixed frequency VARs
This paper develops Bayesian econometric methods for posterior inference in non-parametric mixed frequency VARs using additive regression trees. We argue that regression tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR.
- ISBN
-
978-92-76-28772-8
- Sprache
-
Englisch
- Erschienen in
-
Series: JRC Working Papers in Economics and Finance ; No. 2021/1
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Thema
-
Regression tree models
Bayesian
macroeconomic forecasting
vector autoregressions
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Huber, Florian
Koop, Gary
Onorante, Luca
Pfarrhofer, Michael
Schreiner, Josef
- Ereignis
-
Veröffentlichung
- (wer)
-
Publications Office of the European Union
- (wo)
-
Luxembourg
- (wann)
-
2021
- DOI
-
doi:10.2760/197767
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Huber, Florian
- Koop, Gary
- Onorante, Luca
- Pfarrhofer, Michael
- Schreiner, Josef
- Publications Office of the European Union
Entstanden
- 2021