Artikel

Data-driven urban management: Mapping the landscape

Big data analytics and artificial intelligence, paired with blockchain technology, the Internet of Things, and other emerging technologies, are poised to revolutionise urban management. With massive amounts of data collected from citizens, devices, and traditional sources such as routine and well-established censuses, urban areas across the world have - for the first time in history - the opportunity to monitor and manage their urban infrastructure in real-time. This simultaneously provides previously unimaginable opportunities to shape the future of cities, but also gives rise to new ethical challenges. This paper provides a transdisciplinary synthesis of the developments, opportunities, and challenges for urban management and planning under this ongoing 'digital revolution' to provide a reference point for the largely fragmented research efforts and policy practice in this area. We consider both top-down systems engineering approaches and the bottom-up emergent approaches to coordination of different systems and functions, their implications for the existing physical and institutional constraints on the built environment and various planning practices, as well as the social and ethical considerations associated with this transformation from non-digital urban management to data-driven urban management.

Sprache
Englisch

Erschienen in
Journal: Journal of Urban Management ; ISSN: 2226-5856 ; Volume: 9 ; Year: 2020 ; Issue: 2 ; Pages: 140-150

Klassifikation
Landschaftsgestaltung, Raumplanung
Thema
Data-driven society
Urban management and applications
Evidence-based decision making

Ereignis
Geistige Schöpfung
(wer)
Engin, Zeynep
van Dijk, Justin
Lan, Tian
Longley, Paul A.
Treleaven, Philip C.
Batty, Michael
Penn, Alan
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2020

DOI
doi:10.1016/j.jum.2019.12.001
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Engin, Zeynep
  • van Dijk, Justin
  • Lan, Tian
  • Longley, Paul A.
  • Treleaven, Philip C.
  • Batty, Michael
  • Penn, Alan
  • Elsevier

Entstanden

  • 2020

Ähnliche Objekte (12)