Surrogate Modeling of a Nonlinear, Biphasic Model of Articular Cartilage with Artificial Neural Networks

Abstract: The increasing number of cartilage diseases negatively affects the quality of life for a large part of the population. Understanding the mechanical properties of cartilage is a key component in investigating and mitigating the effects of such diseases. To describe the behavior of articular cartilage, a biphasic fiber‐reinforced numerical model based on the Theory of Porous Media (TPM) has been developed. To possibly provide an alternative for the corresponding time‐consuming computational simulations, the suitability of Artificial Neural Networks (ANNs) as surrogate models is investigated. For this purpose, the simulation results of a compression‐relaxation test are compared with the predictions of the ANN.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Surrogate Modeling of a Nonlinear, Biphasic Model of Articular Cartilage with Artificial Neural Networks ; volume:21 ; number:1 ; year:2021 ; extent:2
Proceedings in applied mathematics and mechanics ; 21, Heft 1 (2021) (gesamt 2)

Urheber
Egli, Franziska S.
Straube, Richard C.
Mielke, André
Ricken, Tim

DOI
10.1002/pamm.202100188
URN
urn:nbn:de:101:1-2021121514255266835641
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:31 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Egli, Franziska S.
  • Straube, Richard C.
  • Mielke, André
  • Ricken, Tim

Ähnliche Objekte (12)