Arbeitspapier

Structural vector autoregressions: Theory of identification and algorithms for inference

Structural vector autoregressions (SVARs) are widely used for policy analysis and to provide stylized facts for dynamic general equilibrium models. Yet there have been no workable rank conditions to ascertain whether an SVAR is globally identified. When identifying restrictions such as long-run restrictions are imposed on impulse responses, there have been no efficient algorithms for small-sample estimation and inference. To fill these important gaps in the literature, this paper makes four contributions. First, we establish general rank conditions for global identification of both overidentified and exactly identified models. Second, we show that these conditions can be checked as a simple matrix-filling exercise and that they apply to a wide class of identifying restrictions, including linear and certain nonlinear restrictions. Third, we establish a very simple rank condition for exactly identified models that amounts to a straightforward counting exercise. Fourth, we develop a number of efficient algorithms for small-sample estimation and inference.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2008-18

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Monetary Policy, Central Banking, and the Supply of Money and Credit: General
Thema
linear and nonlinear restrictions
global identification
almost everywhere
rank conditions
orthogonal rotation
transformation
simultaneity
VAR-Modell
Schätztheorie
Statistische Methodenlehre

Ereignis
Geistige Schöpfung
(wer)
Rubio-Ramírez, Juan F.
Waggoner, Daniel F.
Zha, Tao
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
2008

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Rubio-Ramírez, Juan F.
  • Waggoner, Daniel F.
  • Zha, Tao
  • Federal Reserve Bank of Atlanta

Entstanden

  • 2008

Ähnliche Objekte (12)