Arbeitspapier
Multi-period credit default prediction with time-varying covariates
In credit default prediction models, the need to deal with time-varying covariates often arises. For instance, in the context of corporate default prediction a typical approach is to estimate a hazard model by regressing the hazard rate on time-varying covariates like balance sheet or stock market variables. If the prediction horizon covers multiple periods, this leads to the problem that the future evolution of these covariates is unknown. Consequently, some authors have proposed a framework that augments the prediction problem by covariate forecasting models. In this paper, we present simple alternatives for multi-period prediction that avoid the burden to specify and estimate a model for the covariate processes. In an application to North American public firms, we show that the proposed models deliver high out-of-sample predictive accuracy.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Papers in Statistics and Econometrics ; No. 3/11
- Klassifikation
-
Wirtschaft
Duration Analysis; Optimal Timing Strategies
Forecasting Models; Simulation Methods
Financial Econometrics
Financial Forecasting and Simulation
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Bankruptcy; Liquidation
- Thema
-
credit default
multi-period predictions
hazard models
panel data
out-of-sample tests
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Orth, Walter
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Cologne, Seminar of Economic and Social Statistics
- (wo)
-
Cologne
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Orth, Walter
- University of Cologne, Seminar of Economic and Social Statistics
Entstanden
- 2011