A self-adaptive Tseng extragradient method for solving monotone variational inequality and fixed point problems in Banach spaces

Abstract: In this paper, we introduce a self-adaptive projection method for finding a common element in the solution set of variational inequalities (VIs) and fixed point set for relatively nonexpansive mappings in 2-uniformly convex and uniformly smooth real Banach spaces. We prove a strong convergence result for the sequence generated by our algorithm without imposing a Lipschitz condition on the cost operator of the VIs. We also provide some numerical examples to illustrate the performance of the proposed algorithm by comparing with related methods in the literature. This result extends and improves some recent results in the literature in this direction.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A self-adaptive Tseng extragradient method for solving monotone variational inequality and fixed point problems in Banach spaces ; volume:54 ; number:1 ; year:2021 ; pages:527-547 ; extent:21
Demonstratio mathematica ; 54, Heft 1 (2021), 527-547 (gesamt 21)

Urheber
Jolaoso, Lateef Olakunle

DOI
10.1515/dema-2021-0016
URN
urn:nbn:de:101:1-2411181512192.898006750329
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Jolaoso, Lateef Olakunle

Ähnliche Objekte (12)