Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces

Abstract: In this paper, we propose and study a new inertial iterative algorithm with self-adaptive step size for approximating a common solution of finite family of split monotone variational inclusion problems and fixed point problem of a nonexpansive mapping between a Banach space and a Hilbert space. This method combines the inertial technique with viscosity method and self-adaptive step size for solving the common solution problem. We prove a strong convergence result for the proposed method under some mild conditions. Moreover, we apply our result to study the split feasibility problem and split minimization problem. Finally, we provide some numerical experiments to demonstrate the efficiency of our method in comparison with some well-known methods in the literature. Our method does not require prior knowledge or estimate of the operator norm, which makes it easily implementable unlike so many other methods in the literature, which require prior knowledge of the operator norm for their implementation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces ; volume:55 ; number:1 ; year:2022 ; pages:193-216 ; extent:24
Demonstratio mathematica ; 55, Heft 1 (2022), 193-216 (gesamt 24)

Urheber
Ogwo, Grace N.
Alakoya, Timilehin O.
Mewomo, Oluwatosin

DOI
10.1515/dema-2022-0005
URN
urn:nbn:de:101:1-2022071814340621728720
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:26 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)