Temperature forecasting by deep learning methods

Abstract m  temperature for the next 12 h over Europe. We make use of 13 years of data from the ERA5 reanalysis, of which 11 years are utilized for training and 1 year each is used for validating and testing. We choose the 2 m  temperature, total cloud cover, and the 850 hPa  temperature as predictors and show that both models attain predictive skill by outperforming persistence forecasts. SAVP is superior to ConvLSTM in terms of several evaluation metrics, confirming previous results from computer vision that larger, more complex networks are better suited to learn complex features and to generate better predictions. The 12 h forecasts of SAVP attain a mean squared error (MSE) of about 2.3 K 2 r G K 2 r G K 2 hPa  temperature as an additional predictor enhances the forecast quality, and the model also benefits from a larger spatial domain. By contrast, adding the total cloud cover as predictor or reducing the amount of training data to 8 years has only small effects. Although the temperature forecasts obtained in this way are still less powerful than contemporary NWP models, this study demonstrates that sophisticated deep neural networks may achieve considerable forecast quality beyond the nowcasting range in a purely data-driven way.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Temperature forecasting by deep learning methods ; volume:15 ; number:23 ; year:2022 ; pages:8931-8956 ; extent:26
Geoscientific model development ; 15, Heft 23 (2022), 8931-8956 (gesamt 26)

Urheber
Gong, Bing
Langguth, Michael
Ji, Yan
Mozaffari, Amirpasha
Stadtler, Scarlet
Mache, Karim
Schultz, Martin

DOI
10.5194/gmd-15-8931-2022
URN
urn:nbn:de:101:1-2022121504172999280968
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)