Konferenzbeitrag
Understanding the Sources of Earnings Losses After Job Displacement: A Machine-Learning Approach
We implement a generalized random forest (Athey et al., 2019) to a differencein-difference setting to identify substantial heterogeneity in earnings losses across displaced workers. Using administrative data from Austria over three decades we document that a quarter of workers face cumulative 11-year losses higher than 2 times their pre-displacement annual income, while almost 10% of individuals experience gains. Our methodology allows us to consider many competing theories of earnings losses. We find that the displacement firm's wage premia and the availability of well paying jobs in the local labor market are the two most important factors. This implies that earnings losses can be understood by mean reversion in firm wage premia and losses in match quality, rather than by a destruction of firm-specific human capital. We further show that 94% of the cyclicality of earnings losses is explained by compositional changes of displaced workers over the business cycle.
- Sprache
-
Englisch
- Erschienen in
-
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2021: Climate Economics
- Klassifikation
-
Wirtschaft
Labor Economics: General
- Thema
-
Job displacement
Earnings losses
Causal machine learning
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Pytka, Krzysztof
Gulyas, Andreas
- Ereignis
-
Veröffentlichung
- (wer)
-
ZBW - Leibniz Information Centre for Economics
- (wo)
-
Kiel, Hamburg
- (wann)
-
2021
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Pytka, Krzysztof
- Gulyas, Andreas
- ZBW - Leibniz Information Centre for Economics
Entstanden
- 2021