Konferenzbeitrag

Understanding the Sources of Earnings Losses After Job Displacement: A Machine-Learning Approach

We implement a generalized random forest (Athey et al., 2019) to a differencein-difference setting to identify substantial heterogeneity in earnings losses across displaced workers. Using administrative data from Austria over three decades we document that a quarter of workers face cumulative 11-year losses higher than 2 times their pre-displacement annual income, while almost 10% of individuals experience gains. Our methodology allows us to consider many competing theories of earnings losses. We find that the displacement firm's wage premia and the availability of well paying jobs in the local labor market are the two most important factors. This implies that earnings losses can be understood by mean reversion in firm wage premia and losses in match quality, rather than by a destruction of firm-specific human capital. We further show that 94% of the cyclicality of earnings losses is explained by compositional changes of displaced workers over the business cycle.

Language
Englisch

Bibliographic citation
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2021: Climate Economics

Classification
Wirtschaft
Labor Economics: General
Subject
Job displacement
Earnings losses
Causal machine learning

Event
Geistige Schöpfung
(who)
Pytka, Krzysztof
Gulyas, Andreas
Event
Veröffentlichung
(who)
ZBW - Leibniz Information Centre for Economics
(where)
Kiel, Hamburg
(when)
2021

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Pytka, Krzysztof
  • Gulyas, Andreas
  • ZBW - Leibniz Information Centre for Economics

Time of origin

  • 2021

Other Objects (12)