Arbeitspapier

Inducing sparsity and shrinkage in time-varying parameter models

Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when the number of variables in the model is large. Global-local priors are increasingly used to induce shrinkage in such models. But the estimates produced by these priors can still have appreciable uncertainty. Sparsification has the potential to remove this uncertainty and improve forecasts. In this paper, we develop computationally simple methods which both shrink and sparsify TVP models. In a simulated data exercise we show the benefits of our shrink-then-sparsify approach in a variety of sparse and dense TVP regressions. In a macroeconomic forecast exercise, we find our approach to substantially improve forecast performance relative to shrinkage alone.

Sprache
Englisch

Erschienen in
Series: Working Papers in Economics ; No. 2019-02

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models; Multiple Variables: General
Prices, Business Fluctuations, and Cycles: General (includes Measurement and Data)
Personal Income, Wealth, and Their Distributions
Thema
Sparsity
shrinkage
hierarchical priors
time varying parameter regression

Ereignis
Geistige Schöpfung
(wer)
Huber, Florian
Koop, Gary
Onorante, Luca
Ereignis
Veröffentlichung
(wer)
University of Salzburg, Department of Social Sciences and Economics
(wo)
Salzburg
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Huber, Florian
  • Koop, Gary
  • Onorante, Luca
  • University of Salzburg, Department of Social Sciences and Economics

Entstanden

  • 2019

Ähnliche Objekte (12)