Dependence Measuring from Conditional Variances
Abstract: A conditional variance is an indicator of the level of independence between two random variables. We exploit this intuitive relationship and define a measure v which is almost a measure of mutual complete dependence. Unsurprisingly, the measure attains its minimum value for many pairs of non-independent ran- dom variables. Adjusting the measure so as to make it invariant under all Borel measurable injective trans- formations, we obtain a copula-based measure of dependence v* satisfying A. Rényi’s postulates. Finally, we observe that every nontrivial convex combination of v and v* is a measure of mutual complete dependence.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Dependence Measuring from Conditional Variances ; volume:3 ; number:1 ; year:2015 ; extent:15
Dependence modeling ; 3, Heft 1 (2015) (gesamt 15)
- Creator
-
Kamnitui, Noppadon
Santiwipanont, Tippawan
Sumetkijakan, Songkiat
- DOI
-
10.1515/demo-2015-0007
- URN
-
urn:nbn:de:101:1-2411181542484.175105754807
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:32 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Kamnitui, Noppadon
- Santiwipanont, Tippawan
- Sumetkijakan, Songkiat