Arbeitspapier

Improved Estimation of Dynamic Models of Conditional Means and Variances

Modelling dynamic conditional heteroscedasticity is the daily routine in time series econometrics. We propose a weighted conditional moment estimation to potentially improve the eciency of the QMLE (quasi maximum likelihood estimation). The weights of conditional moments are selected based on the analytical form of optimal instruments, and we nominally decide the optimal instrument based on the third and fourth moments of the underlying error term. This approach is motivated by the idea of general estimation equations (GEE). We also provide an analysis of the eciency of QMLE for the location and variance parameters. Simulations and applications are conducted to show the better performance of our estimators.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2020-021

Klassifikation
Wirtschaft
Mathematical and Quantitative Methods: General

Ereignis
Geistige Schöpfung
(wer)
Wang, Weining
Wooldridge, Jeffrey M.
Xu, Mengshan
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Wang, Weining
  • Wooldridge, Jeffrey M.
  • Xu, Mengshan
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2020

Ähnliche Objekte (12)