Arbeitspapier
Forecasting realized volatility models: the benefits of bagging and nonlinear specifications
We forecast daily realized volatilities with linear and nonlinear models and evaluate the benefits of bootstrap aggregation (bagging) in producing more precise forecasts. We consider the linear autoregressive (AR) model, the Heterogeneous Autoregressive model (HAR), and a non-linear HAR model based on a neural network specification that allows for logistic transition effects (NNHAR). The models and the bagging schemes are applied to the realized volatility time series of the S&P500 index from 3-Jan-2000 through 30-Dec-2005. Our main findings are: (1) For the HAR model, bagging successfully averages over the randomness of variable selection; however, when the NN model is considered, there is no clear benefit from using bagging; (2) including past returns in the models improves the forecast precision; and (3) the NNHAR model outperforms the linear alternatives.
- Language
-
Englisch
- Bibliographic citation
-
Series: Texto para discussão ; No. 547
- Classification
-
Wirtschaft
- Event
-
Geistige Schöpfung
- (who)
-
Hillebrand, Eric
Medeiros, Marcelo C.
- Event
-
Veröffentlichung
- (who)
-
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
- (where)
-
Rio de Janeiro
- (when)
-
2007
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Hillebrand, Eric
- Medeiros, Marcelo C.
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
Time of origin
- 2007