Arbeitspapier
Families of copulas closed under the construction of generalized linear means
We will identify sufficient and partly necessary conditions for a family of copulas to be closed under the construction of generalized linear mean values. These families of copulas generalize results well-known from the literature for the Farlie-Gumbel-Morgenstern (FGM), the Ali-Mikhai-Haq (AMH) and the Barnett-Gumbel (BG) families of copulas closed under weighted linear, harmonic and geometric mean. For these generalizations we calculate the range of Spearman's ρ depending on the choice of weights α, the copulas generation function φ and the exponent γ determining what kind of mean value will be considered. It seems that FGM and AMH generating function φ(υ) = 1 - υ maximizes the range of Spearman's ρ. Furthermore, it will be shown that the considered families of copulas closed under the construction of generalized linear means have no tail dependence in the sense of Ledford & Tawn.
- Language
-
Englisch
- Bibliographic citation
-
Series: IWQW Discussion Papers ; No. 04/2011
- Classification
-
Wirtschaft
International Migration
Wage Level and Structure; Wage Differentials
Geographic Labor Mobility; Immigrant Workers
- Subject
-
copula
generalized linear means
Spearman's ρ
tail dependence
- Event
-
Geistige Schöpfung
- (who)
-
Klein, Ingo
Christa, Florian
- Event
-
Veröffentlichung
- (who)
-
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
- (where)
-
Nürnberg
- (when)
-
2011
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Klein, Ingo
- Christa, Florian
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW)
Time of origin
- 2011