Fit for purpose: modeling wholesale electricity markets realistically with multi-agent deep reinforcement learning
Abstract: Electricity markets need to continuously evolve to address the growing complexity of a predominantly renewable energy-driven, highly interconnected, and sector-integrated energy system. Simulation models allow testing market designs before implementation, which offers advantages for market robustness and efficiency. This work presents a novel approach to simulate the electricity market by using multi-agent deep reinforcement learning for representing revenue-maximizing market participants. The learning capability makes the agents highly adaptive, thereby facilitating a rigorous performance evaluation of market mechanisms under challenging yet practical conditions. Through distinct test cases that vary the number and size of learning agents in an energy-only market, we demonstrate the ability of the proposed method to diagnose market manipulation and reflect market liquidity. Our method is highly scalable, as demonstrated by a case study of the German wholesale energy market with 145 learning agents. This makes the model well-suited for analyzing large and complex electricity markets. The capability of the presented simulation approach facilitates market design analysis, thereby contributing to the establishment future-proof electricity markets to support the energy transition
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
ISSN: 2666-5468
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2023
- Urheber
- Beteiligte Personen und Organisationen
- DOI
-
10.1016/j.egyai.2023.100295
- URN
-
urn:nbn:de:bsz:25-freidok-2386771
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:52 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
Entstanden
- 2023