Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products

Abstract: A structure‐guided engineering of fructose‐6‐phosphate aldolase was performed to expand its substrate promiscuity toward aliphatic nucleophiles, that is, unsubstituted alkanones and alkanals. A “smart” combinatorial library was created targeting residues D6, T26, and N28, which form a binding pocket around the nucleophilic carbon atom. Double‐selectivity screening was executed by high‐performance TLC that allowed simultaneous determination of total activity as well as a preference for acetone versus propanal as competing nucleophiles. D6 turned out to be the key residue that enabled activity with non‐hydroxylated nucleophiles. Altogether 25 single‐ and double‐site variants (D6X and D6X/T26X) were discovered that show useful synthetic activity and a varying preference for ketone or aldehyde as the aldol nucleophiles. Remarkably, all of the novel variants had completely lost their native activity for cleavage of fructose 6‐phosphate.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Complete Switch of Reaction Specificity of an Aldolase by Directed Evolution In Vitro: Synthesis of Generic Aliphatic Aldol Products ; volume:57 ; number:32 ; year:2018 ; pages:10153-10157 ; extent:5
Angewandte Chemie / International edition. International edition ; 57, Heft 32 (2018), 10153-10157 (gesamt 5)

Creator
Junker, Sebastian
Roldan, Raquel
Joosten, Henk‐Jan
Clapés, Pere
Fessner, Wolf-Dieter

DOI
10.1002/anie.201804831
URN
urn:nbn:de:101:1-2022081608175379620869
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:34 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)