Potential of modern photogrammetry versus airborne laser scanning for estimating forest variables in a mountain environment
Abstract: Digital stereo aerial photographs are periodically updated in many countries and offer a viable option for the regular update of information on forest variables. We compared the potential of image-based point clouds derived from three different sets of aerial photographs with airborne laser scanning (ALS) to assess plot-level forest attributes in a mountain environment. The three data types used were (A) high overlapping pan-sharpened (80/60%); (B) high overlapping panchromatic band (80/60%); and (C) standard overlapping pan-sharpened stereo aerial photographs (60/30%). We used height and density metrics at the plot level derived from image-based and ALS point clouds as the explanatory variables and Lorey’s mean height, timber volume, and mean basal area as the response variables. We obtained a RMSE = 8.83%, 29.24% and 35.12% for Lorey’s mean height, volume, and basal area using ALS data, respectively. Similarly, we obtained a RMSE = 9.96%, 31.13%, and 35.99% and RMSE = 11.28%, 31.01%, and 35.66% for Lorey’s mean height, volume and basal area using image-based point clouds derived from pan-sharpened stereo aerial photographs with 80/60% and 60/30% overlapping, respectively. For image-based point clouds derived from a panchromatic band of stereo aerial photographs (80%/60%), we obtained an RMSE = 10.04%, 31.19% and 35.86% for Lorey’s mean height, volume, and basal area, respectively. The overall findings indicated that the performance of image-based point clouds in all cases were as good as ALS. This highlights that in the presence of a highly accurate digital terrain model (DTM) from ALS, image-based point clouds offer a viable option for operational forest management in all countries where stereo aerial photographs are updated on a routine basis. View Full-Text
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
issn: 2072-4292
- Klassifikation
-
Landwirtschaft, Veterinärmedizin
- Schlagwort
-
Waldinventur
Geoinformationssystem
Luftbild
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2019
- Urheber
- DOI
-
10.3390/rs11060661
- URN
-
urn:nbn:de:bsz:25-freidok-1492735
- Rechteinformation
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:53 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Ullah, Sami
- Dees, Matthias
- Patta, Dawan
- Adler, Petra
- Koch, Barbara
- Universität
Entstanden
- 2019