Plastic Extrusion Process Optimization by Inversion of Stacked Autoencoder Classification Machines

Abstract: In the face of climate change and rising energy prices, lowering energy usage of industrial machines is gaining widespread attention. Αpropriate machine settings could lead to reduced production costs and lower environmental impact, while simultaneously maintaining products' quality. However, defining the complex, nonlinear dependencies between these settings and energy usage or quality in manufacturing is often a challenging task. In the presented work, a method for optimized machine settings recommendation is proposed using inverse classification via autoencoders. The algorithm can suggest operation parameters, based on predefined intervals of energy consumption and product properties. The performance is evaluated on data generated by a digital twin of an extrusion process.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Plastic Extrusion Process Optimization by Inversion of Stacked Autoencoder Classification Machines ; day:05 ; month:04 ; year:2023 ; extent:9
Chemie - Ingenieur - Technik ; (05.04.2023) (gesamt 9)

Urheber
Burr, Julia
Sarishvili, Alex
Just, Daniel
Katsaouni, Nikoletta
Moser, Kevin

DOI
10.1002/cite.202200211
URN
urn:nbn:de:101:1-2023040615181044847318
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:56 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Burr, Julia
  • Sarishvili, Alex
  • Just, Daniel
  • Katsaouni, Nikoletta
  • Moser, Kevin

Ähnliche Objekte (12)