Typical fault prediction method for wind turbines based on an improved stacked autoencoder network

Abstract: Timely prediction of wind turbine states is valuable for reduction of potential significant losses resulting from deterioration of health condition. To enhance the accuracy of fault diagnosis and early warning, data collected from supervisory control and data acquisition (SCADA) system of wind turbines is graphically processed and used as input for a deep learning mode, which effectively reflects the correlation between the faults of different components of wind turbines and the multi-state information in SCADA data. An improved stacked autoencoder (ISAE) framework is proposed to address the issue of ineffective fault identification due to the scarcity of labeled samples for certain fault types. In the data augmentation module, synthetic samples are generated using SAE to enhance the training data. Another SAE model is trained using the augmented dataset in the data prediction module for future trend prediction. The attribute correlation information is embedded to compensate for the shortcomings of SAE in learning attribute relationships, and the optimal factor parameters are searched using the particle swarm optimization (PSO) algorithm. Finally, the state of wind turbines is predicted using a CNN-based fault diagnosis module. Experimental results demonstrate that the proposed method can effectively predict faults and identify fault types in advance, which is helpful for wind farms to take proactive measures and schedule maintenance plans to avoid significant losses.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Typical fault prediction method for wind turbines based on an improved stacked autoencoder network ; volume:11 ; number:1 ; year:2023 ; extent:11
Energy Harvesting and Systems ; 11, Heft 1 (2023) (gesamt 11)

Urheber
Ma, Zhiyuan
Cao, Mengnan
Deng, Yi
Jiang, Yuhan
Tian, Ye
Wang, Xudong

DOI
10.1515/ehs-2023-0072
URN
urn:nbn:de:101:1-2024022013165103878604
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:48 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Ma, Zhiyuan
  • Cao, Mengnan
  • Deng, Yi
  • Jiang, Yuhan
  • Tian, Ye
  • Wang, Xudong

Ähnliche Objekte (12)