Conference paper | Konferenzbeitrag
Sampling from Social Networks with Attributes
Sampling from large networks represents a fundamental challenge for social network research. In this paper, we explore the sensitivity of different sampling techniques (node sampling, edge sampling, random walk sampling, and snowball sampling) on social networks with attributes. We consider the special case of networks (i) where we have one attribute with two values (e.g., male and female in the case of gender), (ii) where the size of the two groups is unequal (e.g., a male majority and a female minority), and (iii) where nodes with the same or different attribute value attract or repel each other (i.e., homophilic or heterophilic behavior). We evaluate the different sampling techniques with respect to conserving the position of nodes and the visibility of groups in such networks. Experiments are conducted both on synthetic and empirical social networks. Our results provide evidence that different network sampling techniques are highly sensitive with regard to capturing the expected centrality of nodes, and that their accuracy depends on relative group size differences and on the level of homophily that can be observed in the network. We conclude that uninformed sampling from social networks with attributes thus can significantly impair the ability of researchers to draw valid conclusions about the centrality of nodes and the visibility or invisibility of groups in social networks.
- ISBN
-
978-1-4503-4913-0
- Extent
-
Seite(n): 1181-1190
- Language
-
Englisch
- Notes
-
Status: Veröffentlichungsversion; begutachtet (peer reviewed)
26. International Conference on World Wide Web (WWW'17). Perth, 2017
- Bibliographic citation
-
Proceedings of the 26th International Conference on World Wide Web 2017
- Subject
-
Naturwissenschaften
Sozialwissenschaften, Soziologie
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
statistische Analyse
Datengewinnung
soziales Netzwerk
Interaktionsmuster
Twitter
Soziale Medien
Stichprobe
Messung
Daten
Facebook
Stichprobenfehler
Ranking
geschlechtsspezifische Faktoren
Zufallsauswahl
Geschlechterverhältnis
Selektionsverfahren
Gruppengröße
- Event
-
Geistige Schöpfung
- (who)
-
Wagner, Claudia
Singer, Philipp
Karimi, Fariba
Pfeffer, Jürgen
Strohmaier, Markus
- Event
-
Veröffentlichung
- (who)
-
ACM
- (where)
-
Vereinigte Staaten von Amerika
- (when)
-
2017
- DOI
- URN
-
urn:nbn:de:0168-ssoar-66082-2
- Rights
-
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
- Last update
-
21.06.2024, 4:27 PM CEST
Data provider
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.
Object type
- Konferenzbeitrag
Associated
- Wagner, Claudia
- Singer, Philipp
- Karimi, Fariba
- Pfeffer, Jürgen
- Strohmaier, Markus
- ACM
Time of origin
- 2017