Conference paper | Konferenzbeitrag

Sampling from Social Networks with Attributes

Sampling from large networks represents a fundamental challenge for social network research. In this paper, we explore the sensitivity of different sampling techniques (node sampling, edge sampling, random walk sampling, and snowball sampling) on social networks with attributes. We consider the special case of networks (i) where we have one attribute with two values (e.g., male and female in the case of gender), (ii) where the size of the two groups is unequal (e.g., a male majority and a female minority), and (iii) where nodes with the same or different attribute value attract or repel each other (i.e., homophilic or heterophilic behavior). We evaluate the different sampling techniques with respect to conserving the position of nodes and the visibility of groups in such networks. Experiments are conducted both on synthetic and empirical social networks. Our results provide evidence that different network sampling techniques are highly sensitive with regard to capturing the expected centrality of nodes, and that their accuracy depends on relative group size differences and on the level of homophily that can be observed in the network. We conclude that uninformed sampling from social networks with attributes thus can significantly impair the ability of researchers to draw valid conclusions about the centrality of nodes and the visibility or invisibility of groups in social networks.

Sampling from Social Networks with Attributes

Urheber*in: Wagner, Claudia; Singer, Philipp; Karimi, Fariba; Pfeffer, Jürgen; Strohmaier, Markus

Free access - no reuse

0
/
0

ISBN
978-1-4503-4913-0
Extent
Seite(n): 1181-1190
Language
Englisch
Notes
Status: Veröffentlichungsversion; begutachtet (peer reviewed)
26. International Conference on World Wide Web (WWW'17). Perth, 2017

Bibliographic citation
Proceedings of the 26th International Conference on World Wide Web 2017

Subject
Naturwissenschaften
Sozialwissenschaften, Soziologie
Naturwissenschaften, Technik(wissenschaften), angewandte Wissenschaften
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
statistische Analyse
Datengewinnung
soziales Netzwerk
Interaktionsmuster
Twitter
Soziale Medien
Stichprobe
Messung
Daten
Facebook
Stichprobenfehler
Ranking
geschlechtsspezifische Faktoren
Zufallsauswahl
Geschlechterverhältnis
Selektionsverfahren
Gruppengröße

Event
Geistige Schöpfung
(who)
Wagner, Claudia
Singer, Philipp
Karimi, Fariba
Pfeffer, Jürgen
Strohmaier, Markus
Event
Veröffentlichung
(who)
ACM
(where)
Vereinigte Staaten von Amerika
(when)
2017

DOI
URN
urn:nbn:de:0168-ssoar-66082-2
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:27 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Wagner, Claudia
  • Singer, Philipp
  • Karimi, Fariba
  • Pfeffer, Jürgen
  • Strohmaier, Markus
  • ACM

Time of origin

  • 2017

Other Objects (12)