Arbeitspapier

Strong consistency of the least squares estimator in regression models with adaptive learning

This paper looks at the strong consistency of the ordinary least squares (OLS) estimator in a stereotypical macroeconomic model with adaptive learning. It is a companion to Christopeit & Massmann (2017, Econometric Theory) which considers the estimator’s convergence in distribution and its weak consistency in the same setting. Under constant gain learning, the model is closely related to stationary, (alternating) unit root or explosive autoregressive processes. Under decreasing gain learning, the regressors in the model are asymptotically collinear. The paper examines, first, the issue of strong convergence of the learning recursion: It is argued that, under constant gain learning, the recursion does not converge in any probabilistic sense, while for decreasing gain learning rates are derived at which the recursion converges almost surely to the rational expectations equilibrium. Secondly, the paper establishes the strong consistency of the OLS estimators, under both constant and decreasing gain learning, as well as rates at which the estimators converge almost surely. In the constant gain model, separate estimators for the intercept and slope parameters are juxtaposed to the joint estimator, drawing on the recent literature on explosive autoregressive models. Thirdly, it is emphasised that strong consistency is obtained in all models although the near-optimal condition for the strong consistency of OLS in linear regression models with stochastic regressors, established by Lai & Wei (1982), is not always met.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. TI 2018-045/III

Classification
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Subject
adaptive learning
non-stationary regression
ordinary least squares
almost sure convergence

Event
Geistige Schöpfung
(who)
Christopeit, Norbert
Massmann, Michael
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2018

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Christopeit, Norbert
  • Massmann, Michael
  • Tinbergen Institute

Time of origin

  • 2018

Other Objects (12)