LC-MS-based targeted metabolomics for FACS-purified rare cells

Abstract: Metabolism plays a fundamental role in regulating cellular functions and fate decisions. Liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomic approaches provide high-resolution insights into the metabolic state of a cell. However, the typical sample size is in the order of 105–107 cells and thus not compatible with rare cell populations, especially in the case of a prior flow cytometry-based purification step. Here, we present a comprehensively optimized protocol for targeted metabolomics on rare cell types, such as hematopoietic stem cells and mast cells. Only 5000 cells per sample are required to detect up to 80 metabolites above background. The use of regular-flow liquid chromatography allows for robust data acquisition, and the omission of drying or chemical derivatization avoids potential sources of error. Cell-type-specific differences are preserved while the addition of internal standards, generation of relevant background control samples, and targeted metabolite with quantifiers and qualifiers ensure high data quality. This protocol could help numerous studies to gain thorough insights into cellular metabolic profiles and simultaneously reduce the number of laboratory animals and the time-consuming and costly experiments associated with rare cell-type purification

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Analytical chemistry. - 95, 9 (2023) , 4325-4334, ISSN: 1520-6882

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Schönberger, Katharina
Mitterer, Michael
Glaser, Katharina M.
Stecher, Manuel
Hobitz, Sebastian
Schain-Zota, Dominik
Schuldes, Konrad
Lämmermann, Tim
Rambold, Angelika
Cabezas Wallscheid, Nina
Buescher, Joerg M.

DOI
10.1021/acs.analchem.2c04396
URN
urn:nbn:de:bsz:25-freidok-2537637
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:53 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)