Arbeitspapier

Generalized dynamic factor model + GARCH exploiting multivariate information for univariate prediction

We propose a new model for volatility forecasting which combines the Generalized Dynamic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large number of series, captures the multivariate information and disentangles the common and the idiosyncratic part of each series of returns. In this financial analysis, both these components are modeled as a GARCH.We compare GDFM+GARCH and standard GARCH performance on two samples up to 171 series, providing one-step-ahead volatility predictions of returns. The GDFM+GARCH model outperforms the standard GARCH in most cases. These results are robust with respect to different volatility proxies.

Sprache
Englisch

Erschienen in
Series: LEM Working Paper Series ; No. 2006/13

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Thema
Dynamic Factors
GARCH
volatility forecasting
Prognoseverfahren
Multivariate Analyse
ARCH-Modell
Kapitaleinkommen
Aktienmarkt
USA

Ereignis
Geistige Schöpfung
(wer)
Alessi, Lucia
Barigozzi, Matteo
Capasso, Marco
Ereignis
Veröffentlichung
(wer)
Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)
(wo)
Pisa
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Alessi, Lucia
  • Barigozzi, Matteo
  • Capasso, Marco
  • Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)

Entstanden

  • 2007

Ähnliche Objekte (12)