Arbeitspapier

Empirical process of the squared residuals of an ARCH sequence

We show that the empirical process of the squared residuals of an ARCH(p) sequence converges in distribution 1,0 a Gaussirm process B(F(t)) +t f(t) e, where F is the distribution function of the squared innovations, f its derivative, {B(tl, 0 <; t>1} a Brownian bridge and e a normal random variable.

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 1999,87

Classification
Wirtschaft
Subject
ARCH model
empirical process
squared residuals

Event
Geistige Schöpfung
(who)
Horvath, Lajos
Kokoszka, Piotr
Teyssière, Gilles
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
1999

Handle
URN
urn:nbn:de:kobv:11-10046737
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Horvath, Lajos
  • Kokoszka, Piotr
  • Teyssière, Gilles
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 1999

Other Objects (12)