Arbeitspapier
Empirical process of the squared residuals of an ARCH sequence
We show that the empirical process of the squared residuals of an ARCH(p) sequence converges in distribution 1,0 a Gaussirm process B(F(t)) +t f(t) e, where F is the distribution function of the squared innovations, f its derivative, {B(tl, 0 <; t>1} a Brownian bridge and e a normal random variable.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 373 Discussion Paper ; No. 1999,87
- Classification
-
Wirtschaft
- Subject
-
ARCH model
empirical process
squared residuals
- Event
-
Geistige Schöpfung
- (who)
-
Horvath, Lajos
Kokoszka, Piotr
Teyssière, Gilles
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (where)
-
Berlin
- (when)
-
1999
- Handle
- URN
-
urn:nbn:de:kobv:11-10046737
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Horvath, Lajos
- Kokoszka, Piotr
- Teyssière, Gilles
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Time of origin
- 1999