Arbeitspapier
Exponent of Cross-sectional Dependence for Residuals
In this paper we focus on estimating the degree of cross-sectional dependence in the error terms of a classical panel data regression model. For this purpose we propose an estimator of the exponent of cross-sectional dependence denoted by α; which is based on the number of non-zero pair-wise cross correlations of these errors. We prove that our estimator, ᾶ; is consistent and derive the rate at which ᾶ approaches its true value. We evaluate the finite sample properties of the proposed estimator by use of a Monte Carlo simulation study. The numerical results are encouraging and supportive of the theoretical findings. Finally, we undertake an empirical investigation of α for the errors of the CAPM model and its Fama-French extensions using 10-year rolling samples from S&P 500 securities over the period Sept 1989 - May 2018.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 7223
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Thema
-
pair-wise correlations
cross-sectional dependence
cross-sectional averages
weak and strong factor models
CAPM and Fama-French factors
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bailey, Natalia
Kapetanios, George
Pesaran, M. Hashem
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Bailey, Natalia
- Kapetanios, George
- Pesaran, M. Hashem
- Center for Economic Studies and ifo Institute (CESifo)
Entstanden
- 2018