Arbeitspapier

Exponent of Cross-sectional Dependence for Residuals

In this paper we focus on estimating the degree of cross-sectional dependence in the error terms of a classical panel data regression model. For this purpose we propose an estimator of the exponent of cross-sectional dependence denoted by α; which is based on the number of non-zero pair-wise cross correlations of these errors. We prove that our estimator, ᾶ; is consistent and derive the rate at which ᾶ approaches its true value. We evaluate the finite sample properties of the proposed estimator by use of a Monte Carlo simulation study. The numerical results are encouraging and supportive of the theoretical findings. Finally, we undertake an empirical investigation of α for the errors of the CAPM model and its Fama-French extensions using 10-year rolling samples from S&P 500 securities over the period Sept 1989 - May 2018.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 7223

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
pair-wise correlations
cross-sectional dependence
cross-sectional averages
weak and strong factor models
CAPM and Fama-French factors

Ereignis
Geistige Schöpfung
(wer)
Bailey, Natalia
Kapetanios, George
Pesaran, M. Hashem
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bailey, Natalia
  • Kapetanios, George
  • Pesaran, M. Hashem
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2018

Ähnliche Objekte (12)