Artikel

Interpretable machine learning for real estate market analysis

Machine Learning (ML) excels at most predictive tasks but its complex nonparametric structure renders it less useful for inference and out‐of sample predictions. This article aims to elucidate and enhance the analytical capabilities of ML in real estate through Interpretable ML (IML). Specifically, we compare a hedonic ML approach to a set of model‐agnostic interpretation methods. Our results suggest that IML methods permit a peek into the black box of algorithmic decision making by showing the web of associative relationships between variables in greater resolution. In our empirical applications, we confirm that size and age are the most important rent drivers. Further analysis reveals that certain bundles of hedonic characteristics, such as large apartments in historic buildings with balconies located in affluent neighborhoods, attract higher rents than adding up the contributions of each hedonic characteristic. Building age is shown to exhibit a U‐shaped pattern in that both the youngest and oldest buildings attract the highest rents. Besides revealing valuable distance decay functions for spatial variables, IML methods are also able to visualise how the strength and interactions of hedonic characteristics change over time, which investors could use to determine the types of assets that perform best at any given stage of the real estate investment cycle.

Sprache
Englisch

Erschienen in
Journal: Real Estate Economics ; ISSN: 1540-6229 ; Volume: 51 ; Year: 2022 ; Issue: 5 ; Pages: 1178-1208 ; Hoboken, NJ: Wiley

Klassifikation
Wirtschaft
Thema
black box
hedonic modeling
interpretable machine learning
rental estimation
residential real estate

Ereignis
Geistige Schöpfung
(wer)
Lorenz, Felix
Willwersch, Jonas
Cajias, Marcelo
Fuerst, Franz
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2022

DOI
doi:10.1111/1540-6229.12397
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Lorenz, Felix
  • Willwersch, Jonas
  • Cajias, Marcelo
  • Fuerst, Franz
  • Wiley

Entstanden

  • 2022

Ähnliche Objekte (12)