Artikel

Detecting insurance fraud using supervised and unsupervised machine learning

Fraud is a significant issue for insurance companies, generating much interest in machine learning solutions. Although supervised learning for insurance fraud detection has long been a research focus, unsupervised learning has rarely been studied in this context, and there remains insufficient evidence to guide the choice between these branches of machine learning for insurance fraud detection. Accordingly, this study evaluates supervised and unsupervised learning using proprietary insurance claim data. Furthermore, we conduct a field experiment in cooperation with an insurance company to investigate the performance of each approach in terms of identifying new fraudulent claims. We derive several important findings. Unsupervised learning, especially isolation forests, can successfully detect insurance fraud. Supervised learning also performs strongly, despite few labeled fraud cases. Interestingly, unsupervised and supervised learning detect new fraudulent claims based on different input information. Therefore, for implementation, we suggest understanding supervised and unsupervised methods as complements rather than substitutes.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Insurance ; ISSN: 1539-6975 ; Volume: 90 ; Year: 2023 ; Issue: 3 ; Pages: 743-768 ; Hoboken, NJ: Wiley

Klassifikation
Wirtschaft
Thema
insurance fraud detection
machine learning
supervised learning
unsupervised learning

Ereignis
Geistige Schöpfung
(wer)
Debener, Jörn
Heinke, Volker
Kriebel, Johannes
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2023

DOI
doi:10.1111/jori.12427
Letzte Aktualisierung
20.09.2024, 08:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Debener, Jörn
  • Heinke, Volker
  • Kriebel, Johannes
  • Wiley

Entstanden

  • 2023

Ähnliche Objekte (12)