Arbeitspapier

Bayesian VARs and prior calibration in times of COVID-19

This paper investigates the ability of several generalized Bayesian vector autoregressions to cope with the extreme COVID-19 observations and discusses their impact on prior calibration for inference and forecasting purposes. It shows that the preferred model interprets the pandemic episode as a rare event rather than a persistent increase in macroeconomic volatility. For forecasting, the choice among outlier-robust error structures is less important, however, when a large cross-section of information is used. Besides the error structure, this paper shows that the standard Minnesota prior calibration is an important source of changing macroeconomic transmission channels during the pandemic, altering the predictability of real and nominal variables. To alleviate this sensitivity, an outlier-robust prior calibration is proposed.

ISBN
978-3-95729-931-4
Sprache
Englisch

Erschienen in
Series: Deutsche Bundesbank Discussion Paper ; No. 52/2022

Klassifikation
Wirtschaft
Bayesian Analysis: General
Model Construction and Estimation
Forecasting Models; Simulation Methods
Thema
forecasting
multivariate t errors
common time-varying volatility
outlier-robust prior calibration

Ereignis
Geistige Schöpfung
(wer)
Hartwig, Benny
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hartwig, Benny
  • Deutsche Bundesbank

Entstanden

  • 2022

Ähnliche Objekte (12)