Arbeitspapier

Measurement error in minimum wage evaluations using survey data

We assess the role of measurement error in minimum wage evaluations when the treatment variable - the bite - is inferred from a survey wage distribution. We conduct Monte Carlo experiments on both simulated and empirical distributions of measurement error derived from a record linkage of survey wages and administrative data. On the individual-level treatment effects are downward biased by more than 30 percent. Aggregation of the treatment information at the household, firm or region level does not fully alleviate the bias. In fact, the magnitude and direction of the bias depend on the size of the aggregation units and the allocation of treated individuals to such units. In cases of a strongly segregated allocation, measurement error can cause upward biased treatment effects. Besides aggregation, we discuss two possible remedies: the use of a continuous treatment variable and dropping observations close to the minimum wage threshold.

Sprache
Englisch

Erschienen in
Series: IAB-Discussion Paper ; No. 11/2020

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Index Numbers and Aggregation; Leading indicators
Wages, Compensation, and Labor Costs: Public Policy
Thema
attenuation bias
difference-in-differences
measurement error
minimum wage
misclassification
record linkage
treatment effects
survey data
wage distribution

Ereignis
Geistige Schöpfung
(wer)
Bossler, Mario
Westermeier, Christian
Ereignis
Veröffentlichung
(wer)
Institut für Arbeitsmarkt- und Berufsforschung (IAB)
(wo)
Nürnberg
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bossler, Mario
  • Westermeier, Christian
  • Institut für Arbeitsmarkt- und Berufsforschung (IAB)

Entstanden

  • 2020

Ähnliche Objekte (12)