Arbeitspapier

How to Improve the Performances of DEA/FDH Estimators in the Presence of Noise?

In frontier analysis, most of the nonparametric approaches (DEA, FDH) are based on envelopment ideas which suppose that with probability one, all the observed units belong to the attainable set. In these "deterministic" frontier models, statistical theory is now mostly available. In the presence of noise, this is no more true and envelopment estimators could behave dramatically since they are very sensitive to extreme observations that could result only from noise. DEA/FDH techniques would provide estimators with an error of the order of the standard deviation of the noise. In this paper we propose to adapt some recent results on detecting change points, to improve the performances of the classical DEA/FDH estimators in the presence of noise. We show by simulated examples that the procedure works well when the noise is of moderate size, in term of noise to signal ratio. It turns out that the procedure is also robust to outliers.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 2003,33

Klassifikation
Wirtschaft
Thema
Nonparametric frontier
Stochastic DEA/FDH
Robustness to outliers
Nichtparametrisches Verfahren
Data-Envelopment-Analyse
Schätztheorie
Theorie

Ereignis
Geistige Schöpfung
(wer)
Simar, Léopold
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
2003

Handle
URN
urn:nbn:de:kobv:11-10050382
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Simar, Léopold
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 2003

Ähnliche Objekte (12)