Arbeitspapier

Asymptotic distribution of linear unbiased estimators in the presence of heavy-tailed stochastic regressors and residuals

Under the symmetric α-stable distributional assumption for the disturbances, Blattberg et al (1971) consider unbiased linear estimators for a regression model with non-stochastic regressors. We consider both the rate of convergence to the true value and the asymptotic distribution of the normalized error of the linear unbiased estimators. By doing this, we allow the regressors to be stochastic and disturbances to be heavy-tailed with either finite or infinite variances, where the tail-thickness parameters of the regressors and disturbances may be different.

Language
Englisch

Bibliographic citation
Series: Discussion Paper Series 1 ; No. 2005,21

Classification
Wirtschaft
Subject
Asymptotic distribution
rate of convergence
stochastic regressor
stable non-Gaussian
finite or infinite variance
heavy tails
Regression
Schätztheorie
Statistische Verteilung
Theorie

Event
Geistige Schöpfung
(who)
Samorodnitsky, Gennady
Rachev, Svetlozar T.
Kurz-Kim, Jeong-Ryeol
Event
Veröffentlichung
(who)
Deutsche Bundesbank
(where)
Frankfurt a. M.
(when)
2005

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Samorodnitsky, Gennady
  • Rachev, Svetlozar T.
  • Kurz-Kim, Jeong-Ryeol
  • Deutsche Bundesbank

Time of origin

  • 2005

Other Objects (12)