Ill-posed problems and the conjugate gradient method: Optimal convergence rates in the presence of discretization and modelling errors

Abstract: In this paper, we prove order-optimal convergence rates for the conjugate gradient method applied to linear ill-posed problems when not only the data are noisy but also when the operator is perturbed via discretization and modelling errors.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Ill-posed problems and the conjugate gradient method: Optimal convergence rates in the presence of discretization and modelling errors ; volume:30 ; number:6 ; year:2022 ; pages:905-915 ; extent:11
Journal of inverse and ill-posed problems ; 30, Heft 6 (2022), 905-915 (gesamt 11)

Creator
Neubauer, Andreas

DOI
10.1515/jiip-2022-0039
URN
urn:nbn:de:101:1-2022112313100996636139
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:38 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Neubauer, Andreas

Other Objects (12)