Ill-posed problems and the conjugate gradient method: Optimal convergence rates in the presence of discretization and modelling errors
Abstract: In this paper, we prove order-optimal convergence rates for the conjugate gradient method applied to linear ill-posed problems when not only the data are noisy but also when the operator is perturbed via discretization and modelling errors.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Ill-posed problems and the conjugate gradient method: Optimal convergence rates in the presence of discretization and modelling errors ; volume:30 ; number:6 ; year:2022 ; pages:905-915 ; extent:11
Journal of inverse and ill-posed problems ; 30, Heft 6 (2022), 905-915 (gesamt 11)
- Creator
-
Neubauer, Andreas
- DOI
-
10.1515/jiip-2022-0039
- URN
-
urn:nbn:de:101:1-2022112313100996636139
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:38 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Neubauer, Andreas
Other Objects (12)
