Longitudinal healthcare analytics for disease management: Empirical demonstration for low back pain
Abstract: Clinician guidelines recommend health management to tailor the form of care to the expected course of diseases. Hence, in order to decide upon a suitable treatment plan, health professionals benefit from decision support, i.e., predictions about how a disease is to evolve. In clinical practice, such a prediction model requires interpret- ability. Interpretability, however, is often precluded by complex dynamic models that would be capable of capturing the intrapersonal variability of disease trajectories. Therefore, we develop a cross-sectional ARMA model that allows for inference of the expected course of symptoms. Distinct from traditional time series models, it generalizes to cross-sectional settings and thus patient cohorts (i.e., it is estimated to multiple instead of single disease trajectories). Our model is evaluated according to a longitudinal 52-week study involving 928 patients with low back pain. It achieves a favorable prediction performance while maintaining interpretability. In sum, we provide decision support by informing health professionals about whether symptoms will have the tendency to stabilize or continue to be severe
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
Decision support systems. - 132 (2020) , 113271, ISSN: 1873-5797
- Event
-
Veröffentlichung
- (where)
-
Freiburg
- (who)
-
Universität
- (when)
-
2020
- Creator
-
Müller-Peltzer, Michael J.
Feuerriegel, Stefan
Molgaard Nielsen, Anne
Kongsted, Alice
Vach, Werner
Neumann, Dirk
- Contributor
- DOI
-
10.1016/j.dss.2020.113271
- URN
-
urn:nbn:de:bsz:25-freidok-1719396
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
05.11.2025, 3:35 PM CET
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Müller-Peltzer, Michael J.
- Feuerriegel, Stefan
- Molgaard Nielsen, Anne
- Kongsted, Alice
- Vach, Werner
- Neumann, Dirk
- Albert-Ludwigs-Universität Freiburg. Abteilung für Wirtschaftsinformatik
- Universität
Time of origin
- 2020
Other Objects (12)
Bundesurlaubsgesetz : (Mindesturlaubsgesetz für Arbeitnehmer) ; [vom 8. Januar 1963 ; in d. Fassung d. Art. 3 § 8 d. Gesetzes vom 27. Juli 1969 u.d. Art. II § 2 Heimarbeitsänderungsgesetz vom 29. Oktober 1974] ; mit allen anderen Urlaubsbestimmungen d. Bundes u.d. Länder ; Textausg. mit kurzen Erl. u. Rechtsprechungshinweisen