Longitudinal healthcare analytics for disease management: Empirical demonstration for low back pain

Abstract: Clinician guidelines recommend health management to tailor the form of care to the expected course of diseases. Hence, in order to decide upon a suitable treatment plan, health professionals benefit from decision support, i.e., predictions about how a disease is to evolve. In clinical practice, such a prediction model requires interpret- ability. Interpretability, however, is often precluded by complex dynamic models that would be capable of capturing the intrapersonal variability of disease trajectories. Therefore, we develop a cross-sectional ARMA model that allows for inference of the expected course of symptoms. Distinct from traditional time series models, it generalizes to cross-sectional settings and thus patient cohorts (i.e., it is estimated to multiple instead of single disease trajectories). Our model is evaluated according to a longitudinal 52-week study involving 928 patients with low back pain. It achieves a favorable prediction performance while maintaining interpretability. In sum, we provide decision support by informing health professionals about whether symptoms will have the tendency to stabilize or continue to be severe

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Decision support systems. - 132 (2020) , 113271, ISSN: 1873-5797

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2020
Urheber
Beteiligte Personen und Organisationen

DOI
10.1016/j.dss.2020.113271
URN
urn:nbn:de:bsz:25-freidok-1719396
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:35 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2020

Ähnliche Objekte (12)