Konferenzbeitrag

Design of self-regulating planning model

Purpose: This research aims to develop a dynamic and self-regulated application that considers demand forecasts, based on linear regression as a basic algorithm for machine learning. Methodology: This research uses aggregate planning and machine learning along with inventory policies through the solver excel tool to make optimal decisions at the distribution center to reduce costs and guarantee the level of service. Findings: The findings after this study pertain to planning supply tactics in real-time, self-regulation of information in real-time and optimization of the frequency of the supply. Originality: An application capable of being updated in real-time by updating data by the planning director, which will show the optimal aggregate planning and the indicators of the costs associated with the picking operation of a company with 12000 SKU's (Stock Keeping Unit), in which a retail trade of 65 stores is carried out.

Sprache
Englisch

Erschienen in
10419/209196

Klassifikation
Management
Thema
Linear programming
Linear regression
Aggregate planning
Cost minimization

Ereignis
Geistige Schöpfung
(wer)
Espitia Rincon, Maria Paula
Sanabria Martínez, David Alejandro
Abril Juzga, Kevin Alberto
Santos Hernández, Andrés Felipe
Ereignis
Veröffentlichung
(wer)
epubli GmbH
(wo)
Berlin
(wann)
2019

DOI
doi:10.15480/882.2482
Handle
URN
urn:nbn:de:gbv:830-882.054476
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Espitia Rincon, Maria Paula
  • Sanabria Martínez, David Alejandro
  • Abril Juzga, Kevin Alberto
  • Santos Hernández, Andrés Felipe
  • epubli GmbH

Entstanden

  • 2019

Ähnliche Objekte (12)