Arbeitspapier

Normalization in econometrics

The issue of normalization arises whenever two different values for a vector of unknown parameters imply the identical economic model. A normalization does not just imply a rule for selecting which point, among equivalent ones, to call the maximum likelihood estimator (MLE). It also governs the topography of the set of points that go into a small-sample confidence interval associated with that MLE. A poor normalization can lead to multimodal distributions, disjoint confidence intervals, and very misleading characterizations of the true statistical uncertainty. This paper introduces the identification principle as a framework upon which a normalization should be imposed, according to which the boundaries of the allowable parameter space should correspond to loci along which the model is locally unidentified. The authors illustrate these issues with examples taken from mixture models, structural VARs, and cointegration.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2004-13

Klassifikation
Wirtschaft
Thema
VAR-Modell
Kointegration
Maximum-Likelihood-Methode
Statistische Verteilung

Ereignis
Geistige Schöpfung
(wer)
Hamilton, James D.
Waggoner, Daniel F.
Zha, Tao
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hamilton, James D.
  • Waggoner, Daniel F.
  • Zha, Tao
  • Federal Reserve Bank of Atlanta

Entstanden

  • 2004

Ähnliche Objekte (12)