Arbeitspapier
Normalization in econometrics
The issue of normalization arises whenever two different values for a vector of unknown parameters imply the identical economic model. A normalization does not just imply a rule for selecting which point, among equivalent ones, to call the maximum likelihood estimator (MLE). It also governs the topography of the set of points that go into a small-sample confidence interval associated with that MLE. A poor normalization can lead to multimodal distributions, disjoint confidence intervals, and very misleading characterizations of the true statistical uncertainty. This paper introduces the identification principle as a framework upon which a normalization should be imposed, according to which the boundaries of the allowable parameter space should correspond to loci along which the model is locally unidentified. The authors illustrate these issues with examples taken from mixture models, structural VARs, and cointegration.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 2004-13
- Klassifikation
-
Wirtschaft
- Thema
-
VAR-Modell
Kointegration
Maximum-Likelihood-Methode
Statistische Verteilung
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Hamilton, James D.
Waggoner, Daniel F.
Zha, Tao
- Ereignis
-
Veröffentlichung
- (wer)
-
Federal Reserve Bank of Atlanta
- (wo)
-
Atlanta, GA
- (wann)
-
2004
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Hamilton, James D.
- Waggoner, Daniel F.
- Zha, Tao
- Federal Reserve Bank of Atlanta
Entstanden
- 2004