Arbeitspapier

Likelihood-preserving normalization in multiple equation models

Causal analysis in multiple equation models often revolves around the evaluation of the effects of an exogenous shift in a structural equation. When taking into account the uncertainty implied by the shape of the likelihood, we argue that how normalization is implemented matters for inferential conclusions around the maximum likelihood (ML) estimates of such effects. We develop a general method that eliminates the distortion of finite-sample inferences about these ML estimates after normalization. We show that our likelihood-preserving normalization always maintains coherent economic interpretations while an arbitrary implementation of normalization can lead to ill-determined inferential results.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2000-8

Klassifikation
Wirtschaft
Thema
Time-series analysis
Supply and demand
Demand for money
Money supply

Ereignis
Geistige Schöpfung
(wer)
Waggoner, Daniel F.
Zha, Tao
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
2000

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Waggoner, Daniel F.
  • Zha, Tao
  • Federal Reserve Bank of Atlanta

Entstanden

  • 2000

Ähnliche Objekte (12)