Arbeitspapier

Advanced statistical learning on short term load process forecasting

Short Term Load Forecast (STLF) is necessary for effective scheduling, operation optimization trading, and decision-making for electricity consumers. Modern and efficient machine learning methods are recalled nowadays to manage complicated structural big datasets, which are characterized by having a nonlinear temporal dependence structure. We propose different statistical nonlinear models to manage these challenges of hard type datasets and forecast 15-min frequency electricity load up to 2-days ahead. We show that the Long-short Term Memory (LSTM) and the Gated Recurrent Unit (GRU) models applied to the production line of a chemical production facility outperform several other predictive models in terms of out-of-sample forecasting accuracy by the Diebold-Mariano (DM) test with several metrics. The predictive information is fundamental for the risk and production management of electricity consumers.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2021-020

Klassifikation
Wirtschaft
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Nonrenewable Resources and Conservation: Demand and Supply; Prices
Energy: Demand and Supply; Prices
Thema
Short Term Load Forecast
Deep Neural Network
Hard Structure Load Process

Ereignis
Geistige Schöpfung
(wer)
Hu, Junjie
López Cabrera, Brenda
Melzer, Awdesch
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hu, Junjie
  • López Cabrera, Brenda
  • Melzer, Awdesch
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2021

Ähnliche Objekte (12)