Artikel

Short term electricity load forecasting for institutional buildings

Peak load demand forecasting is important in building unit sectors, as climate change, technological development, and energy policies are causing an increase in peak demand. Thus, accurate peak load forecasting is a critical role in preventing a blackout or loss of energy. This paper presents a study forecasting peak load demand for an institutional building in Seoul. The dataset were collected from campus area consisting of 23 buildings. ARIMA models, ARIMA-GARCH models, multiple seasonal exponential smoothing, and ANN models are used. We find an optimal model with moving window simulations and step-ahead forecasts. Also, including weather and holiday variables is crucial to predict peak load demand. The ANN model with external variables (NARX) worked best for 1-h to 1-d ahead forecasting.

Sprache
Englisch

Erschienen in
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 5 ; Year: 2019 ; Pages: 1270-1280 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft
Thema
ANN
ARIMA
GARCH
Institutional building
Peak load demand forecasting
Time series

Ereignis
Geistige Schöpfung
(wer)
Kim, Yunsun
Son, Heung-gu
Kim, Sahm
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2019

DOI
doi:10.1016/j.egyr.2019.08.086
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kim, Yunsun
  • Son, Heung-gu
  • Kim, Sahm
  • Elsevier

Entstanden

  • 2019

Ähnliche Objekte (12)