Arbeitspapier

Compactness of infinite dimensional parameter spaces

We provide general compactness results for many commonly used parameter spaces in nonparametric estimation. We consider three kinds of functions: (1) functions with bounded domains which satisfy standard norm bounds, (2) functions with bounded domains which do not satisfy standard norm bounds, and (3) functions with unbounded domains. In all three cases we provide two kinds of results, compact embedding and closedness, which together allow one to show that parameter spaces defined by a ║·║s-norm bound are compact under a norm ║·║c. We apply these results to nonparametric mean regression and nonparametric instrumental variables estimation.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP01/16

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Model Construction and Estimation
Subject
Nonparametric Estimation
Sieve Estimation
Trimming
Nonparametric Instrumental Variables

Event
Geistige Schöpfung
(who)
Freyberger, Joachim
Masten, Matthew
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2015

DOI
doi:10.1920/wp.cem.2016.0116
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Freyberger, Joachim
  • Masten, Matthew
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2015

Other Objects (12)