COMPARISON OF UNCERTAINTY QUANTIFICATION METHODS FOR CNN-BASED REGRESSION

Abstract. The evaluation of reliability is not only of high importance for safety-critical deep learning applications but for object pose estimation as well. The uncertainty of the result is one way to express its reliability. In order to better understand existing uncertainty quantification (UQ) methods and their performance on image-based regression tasks, we use a small CNN and various scenarios to evaluate the estimated uncertainties. The evaluation is done on different simplistic synthetic datasets, consisting of gray-scale images of squares on a darker background. We train the CNN to predict the square center position of the square in the image. We compare how different UQ methods perform under dataset shift, rotation, occlusion, noise changes in the images.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
COMPARISON OF UNCERTAINTY QUANTIFICATION METHODS FOR CNN-BASED REGRESSION ; volume:XLIII-B2-2022 ; year:2022 ; pages:721-728 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLIII-B2-2022 (2022), 721-728 (gesamt 8)

Creator
Wursthorn, K.
Hillemann, M.
Ulrich, M.

DOI
10.5194/isprs-archives-XLIII-B2-2022-721-2022
URN
urn:nbn:de:101:1-2022060206090498593820
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:25 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Wursthorn, K.
  • Hillemann, M.
  • Ulrich, M.

Other Objects (12)