Arbeitspapier

The Expected Number of Nash Equilibria of a Normal Form Game

Fix finite pure strategy sets S1, . . ., Sn, and let S = S1 x . . .x Sn. In our model of a random game the agents' payoffs are statistically independent, with each agent's payoff uniformly distributed on the unit sphere in IRS. For given nonempty T1 c S1, . . ., Tn c Sn we give a computationally implementable formula for the mean number of Nash equilibria in which each agent i's mixed strategy has support Ti. The formula is the product of two expressions. The first is the expected number of totally mixed equilibria for the truncated game obtained by eliminating pure strategies outside the sets Ti. The second may be construed as the "probability" that such an equilibrium remains an equilibrium when the strategies in the sets SinTi become available. Journal of Economic Literature Classification Number C72.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 315

Klassifikation
Wirtschaft
Thema
Nash-Gleichgewicht
Normalformspiel
Gleichgewicht
Theorie

Ereignis
Geistige Schöpfung
(wer)
McLennan, Andrew
Ereignis
Veröffentlichung
(wer)
University of Minnesota, Center for Economic Research
(wo)
Minneapolis, MN
(wann)
2001

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • McLennan, Andrew
  • University of Minnesota, Center for Economic Research

Entstanden

  • 2001

Ähnliche Objekte (12)