Analytic and geometric problems related to capillary hypersurfaces

Abstract: This thesis consists of two parts. The first part is devoted to studying the Alexandrov−Fenchel inequalities for capillary hypersurfaces supported on geodesic planes in Euclidean space $ℝⁿ⁺¹$ and hyperbolic space $ℍⁿ⁺¹$. we introduce a locally constrained mean curvature flow in $ℝⁿ⁺¹$ and a locally constrained inverse curvature flow in $ℍⁿ⁺¹$ respectively. Along curvature flows, we show that the quermassintegrals for the capillary hypersurfaces satisfy some monotone properties and we prove the long−time existence and convergence of those flows. The second part of this thesis concerns the Minkowski problem for convex capillary hypersurfaces in $̄{ℝ}ⁿ⁺¹₊$. Namely, we want to find a convex capillary hypersurface $ ⊂̄{ℝ}ⁿ⁺¹₊$ whose Gauss−Kronecker curvature is prescribed as a positive function $f$ defined on $ _\ₜₕₑₜₐ$. We transform the capillary Minkowski problem into solving a Monge−Amp\`ere equation on spherical cap $ _\ₜₕₑₜₐ$ with a Robin boundary value condition

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Universität Freiburg, Dissertation, 2024

Schlagwort
Hyperfläche
Differentialgeometrie

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber

DOI
10.6094/UNIFR/256604
URN
urn:nbn:de:bsz:25-freidok-2566046
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:47 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Entstanden

  • 2024

Ähnliche Objekte (12)