Analytic and geometric problems related to capillary hypersurfaces
Abstract: This thesis consists of two parts. The first part is devoted to studying the Alexandrov−Fenchel inequalities for capillary hypersurfaces supported on geodesic planes in Euclidean space $ℝⁿ⁺¹$ and hyperbolic space $ℍⁿ⁺¹$. we introduce a locally constrained mean curvature flow in $ℝⁿ⁺¹$ and a locally constrained inverse curvature flow in $ℍⁿ⁺¹$ respectively. Along curvature flows, we show that the quermassintegrals for the capillary hypersurfaces satisfy some monotone properties and we prove the long−time existence and convergence of those flows. The second part of this thesis concerns the Minkowski problem for convex capillary hypersurfaces in $̄{ℝ}ⁿ⁺¹₊$. Namely, we want to find a convex capillary hypersurface $ ⊂̄{ℝ}ⁿ⁺¹₊$ whose Gauss−Kronecker curvature is prescribed as a positive function $f$ defined on $ _\ₜₕₑₜₐ$. We transform the capillary Minkowski problem into solving a Monge−Amp\`ere equation on spherical cap $ _\ₜₕₑₜₐ$ with a Robin boundary value condition
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Universität Freiburg, Dissertation, 2024
- Schlagwort
-
Hyperfläche
Differentialgeometrie
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
- Beteiligte Personen und Organisationen
- DOI
-
10.6094/UNIFR/256604
- URN
-
urn:nbn:de:bsz:25-freidok-2566046
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:47 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
Entstanden
- 2024