Arbeitspapier

Inference in a class of optimization problems: Confidence regions and finite sample bounds on errors in coverage probabilities

This paper describes three methods for carrying out non-asymptotic inference on partially identified parameters that are solutions to a class of optimization problems. Applications in which the optimization problems arise include estimation under shape restrictions, estimation of models of discrete games, and estimation based on grouped data. The partially identified parameters are characterized by restrictions that involve the unknown population means of observed random variables in addition to the structural parameters of interest. Inference consists of finding confidence intervals for the structural parameters. Our theory provides finite-sample lower bounds on the coverage probabilities of the confidence intervals under three sets of assumptions of increasing strength. With the moderate sample sizes found in most economics applications, the bounds become tighter as the assumptions strengthen. We discuss estimation of population parameters that the bounds depend on and contrast our methods with alternative methods for obtaining confidence intervals for partially identified parameters. The results of Monte Carlo experiments and empirical examples illustrate the usefulness of our method.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP33/21

Klassifikation
Wirtschaft
Thema
partial identification
normal approximation
sub-Gaussian distribution
finite-sample bounds
Partielle Identifikation
Induktive Statistik
Normalverteilung
Monte-Carlo-Simulation

Ereignis
Geistige Schöpfung
(wer)
Horowitz, Joel
Lee, Sokbae
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2021

DOI
doi:10.47004/wp.cem.2021.3321
Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Horowitz, Joel
  • Lee, Sokbae
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2021

Ähnliche Objekte (12)