Arbeitspapier
On the efficiency of German growth forecasts: An empirical analysis using quantile random forests
We use quantile random forests (QRF) to study the efficiency of the growth forecasts published by three leading German economic research institutes for the sample period from 1970 to 2017. To this end, we use a large array of predictors, including topics extracted by means of computational-linguistics tools from the business-cycle reports of the institutes, to model the information set of the institutes. We use this array of predictors to estimate the quantiles of the conditional distribution of the forecast errors made by the institutes, and then fit a skewed t-distribution to the estimated quantiles. We use the resulting density forecasts to compute the log probability score of the predicted forecast errors. Based on an extensive insample and out-of-sample analysis, we find evidence, particularly in the case of longer-term forecasts, against the null hypothesis of strongly efficient forecasts. We cannot reject weak efficiency of forecasts.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers of the Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour" ; No. 21
- Klassifikation
-
Wirtschaft
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Thema
-
Growth forecasts
Forecast efficiency
Quantile-random forests
Density forecasts
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Foltas, Alexander
Pierdzioch, Christian
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University Berlin
- (wo)
-
Berlin
- (wann)
-
2020
- DOI
-
doi:10.18452/21910
- Handle
- URN
-
urn:nbn:de:kobv:11-110-18452/22627-7
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Foltas, Alexander
- Pierdzioch, Christian
- Humboldt University Berlin
Entstanden
- 2020