Arbeitspapier

On the efficiency of German growth forecasts: An empirical analysis using quantile random forests

We use quantile random forests (QRF) to study the efficiency of the growth forecasts published by three leading German economic research institutes for the sample period from 1970 to 2017. To this end, we use a large array of predictors, including topics extracted by means of computational-linguistics tools from the business-cycle reports of the institutes, to model the information set of the institutes. We use this array of predictors to estimate the quantiles of the conditional distribution of the forecast errors made by the institutes, and then fit a skewed t-distribution to the estimated quantiles. We use the resulting density forecasts to compute the log probability score of the predicted forecast errors. Based on an extensive insample and out-of-sample analysis, we find evidence, particularly in the case of longer-term forecasts, against the null hypothesis of strongly efficient forecasts. We cannot reject weak efficiency of forecasts.

Sprache
Englisch

Erschienen in
Series: Working Papers of the Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour" ; No. 21

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
Growth forecasts
Forecast efficiency
Quantile-random forests
Density forecasts

Ereignis
Geistige Schöpfung
(wer)
Foltas, Alexander
Pierdzioch, Christian
Ereignis
Veröffentlichung
(wer)
Humboldt University Berlin
(wo)
Berlin
(wann)
2020

DOI
doi:10.18452/21910
Handle
URN
urn:nbn:de:kobv:11-110-18452/22627-7
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Foltas, Alexander
  • Pierdzioch, Christian
  • Humboldt University Berlin

Entstanden

  • 2020

Ähnliche Objekte (12)