Artikel

Decentralization estimators for instrumental variable quantile regression models

The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen (2005)) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the nonsmoothness and nonconvexity of the IVQR GMM objective function. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression subproblems which are convex and can be solved efficiently. This reformulation leads to new identification results and to fast, easy to implement, and tuning-free estimators that do not require the availability of high-level "black box" optimization routines.

Language
Englisch

Bibliographic citation
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 12 ; Year: 2021 ; Issue: 2 ; Pages: 443-475 ; New Haven, CT: The Econometric Society

Classification
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Subject
bootstrap
contraction mapping
fixed-point estimator
Instrumental variables
quantile regression

Event
Geistige Schöpfung
(who)
Kaido, Hiroaki
Wüthrich, Kaspar
Event
Veröffentlichung
(who)
The Econometric Society
(where)
New Haven, CT
(when)
2021

DOI
doi:10.3982/QE1440
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Kaido, Hiroaki
  • Wüthrich, Kaspar
  • The Econometric Society

Time of origin

  • 2021

Other Objects (12)