Arbeitspapier
The subcluster wild bootstrap for few (treated) clusters
Inference based on cluster-robust standard errors is known to fail when the number of clusters is small, and the wild cluster bootstrap fails dramatically when the number of treated clusters is very small. We propose a family of new procedures called the sub- cluster wild bootstrap. In the case of pure treatment models, where all the observations in each cluster are either treated or not, the new procedures can work astonishingly well. The key requirement is that the sizes of the treated and untreated clusters should be very similar. Unfortunately, the analog of this requirement is not likely to hold for difference-in-differences regressions. Our theoretical results are supported by extensive simulations and an empirical example.
- Sprache
-
Englisch
- Erschienen in
-
Series: Queen's Economics Department Working Paper ; No. 1364
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Thema
-
CRVE
grouped data
clustered data
wild bootstrap
wild cluster bootstrap
subclustering
treatment model
difference-in-differences
robust inference
- Ereignis
-
Geistige Schöpfung
- (wer)
-
MacKinnon, James G.
Webb, Matthew D.
- Ereignis
-
Veröffentlichung
- (wer)
-
Queen's University, Department of Economics
- (wo)
-
Kingston (Ontario)
- (wann)
-
2016
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- MacKinnon, James G.
- Webb, Matthew D.
- Queen's University, Department of Economics
Entstanden
- 2016